
International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Low power Viterbi decoder for Trellis coded

 Modulation using T-algorithm
 Md.Javeed, B.Sri lakshmi

Abstract: The viterbi decoder which is low power with the convolutional encoder for the trellis coded modulation is shown in this paper. Convolutional
encoding with Viterbi decoding is a good forward error correction technique suitable for channels affected by noise degradation. In this paper it

shows the viterbi decoder architecture with convolutional encoder with proposed precomputation T-algorithm which can effectively reduce the power
consumption with negligible decrease in the speed. Implementation result is for ¾ convolutional code rate with constraint length 7 used for trellis coded
modulation. This architecture reduces the power consumption up to 70% without any performance loss, while the degradation in clock speed is
negligible.

Key words: Convolutional code, T-algorithm, Trellis coded modulation (TCM), viterbi decoder, VLSI.

I. INTRODUCTION:

The use of convolutional codes with probabilistic decoding

can significantly improve the error performance of a

communication system [1]. Trellis coded modulation

schemes are used in many bandwidth efficient systems.

Typically a TCM system employs a high rate convolutional

code, which leads to high complexity of viterbi decoder for

the TCM decoder, when the constraint length of

Convolutional code is also normal. For example the rate ¾

convolutional code used in trellis coded modulation system

for any application has a constraint length of 7 will be in the

complexity of the corresponding viterbi decoder for a rate

½ convolutional code with constraint length of 9 [2] due to

the large number of transitions in the trellis. So, In terms of

power consumption, the viterbi decoder is dominant

module in a TCM decoder. In order to reduce the

computational complexity as well as power consumption,

low power schemes should be exploited for the VD in a

TCM decoder.

General solutions for low power viterbi decoder design will

be studied in our implementation work. Power reduction in

VDs could be achieved by reducing the number of states,

(for example reduced state sequence decoding [3], M-

algorithm [4] and T-algorithm [1],[5],) or by over scaling the

MD. Javeed is pursuing his master of technology in VLSI systems in Bomma

institute of technology and science , Jawaharlal Nehru technological

university, India. (E-mail: javeed.rahmanee@gmail.com)

B. Sri lakshmi is currently working as an assi.prof. in electronics and

communication engineering in Jawaharlal Nehru technological university,

India.(E-mail: boddu.srilakshmi@gmail.com)

supply voltage[6].Over scaling of the supply voltage is

having a problem that it needs to take whole system into

consideration including with VD at which we are not

focusing of our research. In practical application RSSD is

more commonly used than M-Algorithm which is generally

not as efficient as M-algorithm[3] and T-Algorithm.

Basically M-Algorithm requires a sorting process in a

feedback loop where as T–

Algorithm only searches for the optimal path metric [P]

that is the maximum value or the minimum value of Ps.

 T-Algorithm has been shown to very efficient in

reducing the power consumption [7],[8]. However,

searching for the optimal path metric in the feedback loop

still reduces the decoding speed. To overcome this

drawback, T-Algorithm has proposed in two variations, the

relaxed adaptive VD [7], Which suggests using an

estimated optimal path metric, instead of finding the real

one each cycle and the limited-search parallel state VD

based on scarce state transition [SST][8].

 When applied to high rate convolutional codes, the

relaxed adaptive VD suffers a severe degradation of bit-

error-rate(BER) performance due to the inherent drifting

error between the estimated optimal path metric and the

accurate one[9]. On the other hand the SST based scheme

requires predecoding and re encoding process and is not

suitable for TCM decoders. In TCM, the encoded data are

always associated with a complex multi level modulation

scheme like 8-ary phase shift keying (8PSK) OR 16/64-ary

quadrature amplitude modulation (16/64QAM) through a

constellation point mapper. At the receiver, a soft input VD

should be employed to guarantee a good coding gain. So,

the computational over head and decoding latency due to

predecoding and re encoding of the TCM signal become

mailto:javeed.rahmanee@gmail.com
mailto:boddu.srilakshmi@gmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

high. An add-compare select unit (ACSU) architecture

based on precomputation for VDs incorporating T-

Algorithm [9], which efficiently improves the clock speed

of a VD with T-Algorithm for a rate ¾ code. Now, we

further analyze the precomputation algorithm. A

systematic way to determine the optimal precomputation

steps is shown, where the minimum number of steps for

critical path to achieve the theoretical iteration bound is

calculated and the computational complexity overhead due

to precomputation is evaluated. Then, we discuss a

complete low-power VD design for the rate ¾

convolutional code[2]. Finally ASIC implementation results

of VD with convolutional encoding are shown.

 In this paper section II gives Information about VDs

.Section III presents the precomputation architecture with

T-algorithm. Design example with the modifications of

survivor path memory unit(SMU) are discussed In section

IV. Synthesis and power estimation results are shown in

section V.

II. VITERBI DECODER

A general diagram for a viterbi decoder is shown in fig. 1.

First , branch metrics are calculated in the B unit (BMU)

from the received symbols. In a TCM decoder, this module

is replaced by transition metrics unit (TMU), which is more

complex than the BMU. Then, Bs are fed into the ACSU that

recursively compute the path metrics (Ps) and outputs

decision bits for each possible state transition. After that,

the decision bits are stored in and retrieved from the SMU

in order to decode the source bits along the final survivor

path. The Ps of the current iteration are stored in the path

metric unit (PMU).

 For calculating the optimal Ps and puncturing states T-

Algorithm requires extra computation in the ACSU loop.

Therefore, a straight forward implementation of T-

Algorithm will dramatically reduce the decoding speed.

The key point of improving the clock speed of T-Algorithm

is to quickly find the optimal path metric.

 III. PRECOMPUTATION ARCHITECTURE

A. Precomputation Algorithm

 The Basic idea of the precomputation algorithm

was presented in [9]. The Branch metric can be calculated

by two types: Hamming distance and Euclidean distance

[10]. Consider a VD for a convoluional code with a

constraint length k, where each state receives p candidate

paths. First, we expand Ps at the current time slot n(Ps(n))

as a function of Ps(n-1)to form a look-ahead computation of

the optimal P-Popt (n). If branch metrics are calculated

based on the Euclidean distance, popt(n) is the minimum

value of Ps(n) can be get as

popt(n) =min{p0(n),p1(n),……..p2-1k(n)}

 =min{min[p0,0(n-1)+B0,0(n),p0,1(n-1)+B0,1(n)……….,

p0,p(n-1)+B0,p(n)],

 Min[p1,0(n-1)+B1,0(n),p1,1(n-1)+B1,1(n),……,p1,p(n-1) +B1,p(n)],

……..,

 Min[p2k-1-1,0(n-1)+B2k-1-1,0(n),P2k-1-1,1(n-1)+B2k-1-1,1(n),…..,P2k-1-1,p

(n-1) +B2k-1- 1,p(n)]}

 =min{P0,0(n-1)+B0,0(n),

 P0,1(n-1)+B0,1(n),…….,

 P0,p(n-1)+B0,p(n),

 P1,0(n-1)+B1,0(n),

P1,1(n-1)+B1,1(n),…..,

P1,p(n-1)+B1,p(n),…….,

P2k-1-1,0(n-1)+B2k-1-1,0(n),

P2k-1-1,1(n-1)+B2k-1-1,1(n),……,

P2k-1-1,p(n-1)+B2k-1-1,p(n)}. (1)

Now, we group the states into several clusters to reduce the

computational overhead caused by look-ahead

computation. The trellis butterflies for a VD usually have a

symmetric structure. In other words, the states can be

grouped into m clusters, where all the clusters have the

same number of states and all the states in the same cluster

will be extended by the same Bs. Thus (1) can be rewritten

as

 Popt=min{min(Ps(n-1)in cluster 1)

 +min(Bs(n) for cluster 1),

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Min(Ps(n-1) in cluster 2)

 +min(Bs(n) for cluster 2), ……… ,

 Min(Ps(n-1) in cluster m)

 +min(Bs(n) for cluster m)}.

The minimum (Bs) for each cluster can be easily obtained

from the BMU or TMU and min(Ps) at time n-1 in each

cluster can be precalculated at the same time when the

ACSU is updating the new Ps for time n. Theoretically,

when we continuously decompose Ps(n-1), Ps(n-2),……, the

precomputation scheme can be extended to Q steps. Where

q is any positive integer that is less than n. Hence Popt(n)

can be calculated directly from Ps(n-q) in q cycles.

B. Choosing Precomputation steps

 In [9], through a design example that, q -step pre-

computation can be pipelined into q stages, where the logic

delay of each stage is continuously reduced as q increases.

As a result, the de-coding speed of the low-power VD is

greatly improved. However, after reaching a certain

number of steps, qb, further precomputation would not

result in additional benefits because of the inherent

iteration bound of the ACSU loop. Therefore, it is worth to

discuss the optimal number of precomputation steps.

In a TCM system, the convolutional code usually has a

coding rate of R/(R+1) , R=2,3,4,……, so that in (1), p=2R

and the logic delay of the ACSU is TACSU=Taddder+Tp-in_comp,

where Tadder is the logic delay of the adder to compute Ps

of each candidate path that reaches the same state and Tp-

in_comp is the logic delay of a p-input comparator to

determine the survivor path(the path with the minimum

metric) for each state. If T-algorithm is employed in the VD,

the iteration bound is slightly longer than TACSU because

there will be another two input comparator in the loop to

compare the new Ps with a threshold value obtained from

the optimal Path metric and preset T as shown in (3)

 Tbound=Tadder+Tp_in_comp+T2-in_comp. (3)

 To achieve the iteration bound expressed in(3), for the

precomputation in each pipelining stage, we limit the

comparison to be among only p 0r 2p metrics. To simplify

our evaluation , we assume that each stage reduces the

number of the metrics to 1/p(or2-R) of its input metrics

meeting the theoretical iteration bound should satisfy

(2R)qb ≥ 2k-1. Therefore qb≥ (k-1)/R and qb is expressed as

(4), with a ceiling function.

In the design example shown in[9], with a coding rate of ¾

and constraint length of 7, the minimum precomputation

steps for the VD to meet the iteration bound is 2 according

to (4). It is the same value as we obtained from direct

architecture design [9]. In some cases, the number of

remaining metrics may slightly expand during a certain

pipeline stage after addition with Bs. Usually, the extra

delay can be absorbed by an optimized architecture or

circuit design. Even if the extra delay is hard to eliminate,

the resultant clock speed is very close to the theoretical

bound. To fully achieve the iteration bound, we could add

another pipeline stage, though it is very costly.

 Computational overhead (compared with

conventional T-algorithm) is an important factor that

should be carefully evaluated. Most of the computational

overhead comes from adding Bs to the metrics at each stage

as indicated in (2). In other words, If there are m remaining

metrics after comparison in a stage, the computational

overhead from this stage is at least m addition operations.

The exact overhead varies from case to case based on the

convolutional code’s trellis diagram. Again, to simplify the

evaluation, we consider, a code with a constraint length k

and q precomputation steps. Also, we assume that each

remaining metric would cause a computational overhead of

one addition operation. In this case, the number of metrics

will reduce at a ratio of 2(k-1)/q and the overall

computational overhead is (measured with addition

operation)

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Noverhead=20+2(k-1)/q+22(k—1)/q……..+2(q-1)(k-1)/q

 =2q.(k-1)/q-1/2(k-1)/q-1

 =2k-1-1/2(k-1)/q-1 (5)

The estimated computational overhead according to (5) is

63/ (26/q-1) when k=7 and q.≤ 6, which almost exponentially

to q. In a real design the overhead increases even faster

than what is given by (5) when other factors (such as

comparisons or expansion of metrics as we mentioned

above) are taken into consideration. Therefore, a small

number of precomputational steps is preferred even though

the iteration bound may not be fully satisfied. In most

cases, one or two-step precomputation is a good choice.

 The above analysis also reveals that precomputation is

not a good option for low rate convolutional codes (rate of

1/RC, RC=2,3,…..), because it usually needs more than two

steps to effectively reduce the critical path(in that case, R=1

in(4) and qb is k-1). However, for TCM systems, where

high-rate convolutional codes are always employed, Two

steps of precomputation could achieve the iteration bound

or make a big difference in terms of clock speed. In

addition, the computational overhead is a small.

IV. LOW POWER VITERBI DECODER DESIGN

We use the 4-D 8PSK TCM system described in[2] as the

example. The rate ¾ convolutional code employed in the

TCM system is shown in Fig. 3. Preliminary BER

performance and architecture design for the ACSU unit

have been shown in [9]. In his section, we further address

the SMU design issue. Later in the next section we will

report ASIC implementation results that have not been

obtained earlier.

 BER performance of the VD employing T-algorithm with

different values of T over an additive white Gaussian noise

channel is shown in Fig. 4. The simulation is based on a 4-D

8PSK TCM system employing the rate -3/4 code [11]. The

overall coding rate is 11/12 after due to other uncoded bits

in TCM system. Compared with over ideal viterbi

algorithm, the threshold ‚Tpm‛ can be lowered to 0.3 with

less than 0.1 dB of performance loss, while the

computational complexity could be reduced by upto 90%

[9] ideally. Since the performance is the same as that of the

conventional T-algorithm.

A. One step precomputation

 For the convenience of our discussion we define the

left most register in Fig. 3 as the most significant bit (MSB)

and right most register as the least significant bit (LSB). The

64 states and path metrics are labeled from 0 to 63.

 A careful study reveals that the 64 states can be

partitioned into two groups odd numbered Ps(when ‘LSB’

is 1) And even numbered (when ‘LSB’ is 0) The odd PMs

are all extended by odd Bs (when Z0 is ‘1’) and the even

PMs are all extended by even Bs (when Z0 is ‘0’). The

minimum P becomes:

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Popt (n) = min {min (even Ps (n-1)) +

 min(even Bs(n)), min (odd Ps (n-1))

 +min(odd Bs(n)) }.

The functional diagram of the 1-step pre-computation

scheme is shown in Fig. 5. In general (Path metric purge

algorithm) PPAU have to wait for the new Ps from the

ACSU to calculate the optimal Path metric [12], while in

Fig. 5 the optimal Path metric is calculated directly from Ps

in the previous cycles at the same time when the ACSU is

calculating the new Ps. The details of the PPAU are shown

in Fig. 6.

The critical path of the 1-step pre-computation scheme is

T1-step-pre-T = 2TAdder+ 2T4-in_comp +3T2-in-comp (6)

 The hardware overhead of the 1-step pre-

computation scheme is about 4 adders, which is negligible.

Compared with the SEPC-T algorithm, however, the critical

path of the 1-sept pre-computation scheme is still long[12].

In order to further shorten the critical path, we explore the

2-step pre-computation design next.

 B. Two step precomputation

a. Acsu design

 We again need to analyze the trellis transition of the

original code. In the 1-step pre-computation architecture,

we have pointed out that for the particular code shown in

Fig. 3, odd-numbered states are extended by odd Bs, while

even-numbered states are extended by even Bs.

Furthermore, the even states all extend to states with higher

indices (the MSB in Fig. 3 is ‘1’) in the trellis transition,

while the odd states extend to states with lower indices (the

MSB is ‘0’ in Fig. 3). This information allows us to obtain

the 2-step pre-computation data path. This process is

straightforward, although the mathematical details are

tedious. For clarity, we only provide the main conclusion

here.

The states are further grouped into 4 clusters as described

by (7). The BMs are categorized in the same way and are

described by (8).

 cluster3 = {Pm | 0≤m≤ 63, m mod 4 = 3}

cluster2 = ,Pm | 0 ≤m≤63, m mod 4 = 1}

 cluster1 = ,Pm | 0 ≤m≤ 63, m mod 4 = 2}

cluster0 = ,Pm | 0 ≤m≤ 63, m mod 4 = 0} (7)

BMG3 = {Bm | 0≤m≤ 15, m mod 4 = 3}

BMG2 = {Bm | 0≤m≤ 15, m mod 4 = 1}

BMG1 = {Bm | 0≤m≤ 15, m mod 4 = 2}

BMG0 = {Bm | 0≤m≤ 15, m mod 4 = 0} (8)

The optimal PM at time n is calculated as

Popt (n) = min [min {min (cluster0 (n-2))+ min

 (BMG0 (n-1)), min (cluster1 (n-2))+

 min (BMG1 (n-1)), min (cluster2 (n-

2)) + min (BMG3 (n-1)), min (cluster3 (n-2))+ min (BMG2(n-

1)) }+ min (even Bs(n)),

min {min (cluster0 (n-2))+ min (BMG1(n-1)),

 min (cluster1 (n-2))+ min (BMG0(n-1)),

 min (cluster2 (n-2)) + min (BMG2 (n-1)),

 min (cluster3 (n-2))+ min (BMG3(n-1))

 }+ min (odd Bs(n)) (9)

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

The functional block diagram of viterbi decoder with two

step precomputation T-algorithm is shown in fig. 7 The

minimum value of each branch metric group (BMG) can be

calculated in BMU or TMU and then passed to threshold

generator unit (TGU) to calculate(Popt+T)- (Popt+T) and the

new Ps are compared in the ‚purge unit‛. The architecture

of TGU is shown in fig. 8 which implements the key

functions of two stem precomputation scheme. In figure 8

the ‚MIN 16‛ unit for finding the minimum value in each

cluster is constructed with two stages of four-input

comparators. This architecture has been optimized to meet

the iteration bound [9]. Com-pared with the conventional

T-algorithm, the computational overhead of this

architecture is 12 addition operations and a comparison,

which is slightly more than the number obtained from the

evaluation in (5)

b. SMU design

In this section, we address an important issue regarding

SMU design when T -algorithm is employed. There are two

different types of SMU in the literature: register exchange

(RE) and trace back (TB) schemes. In the regular VD

without any low-power schemes, SMU always out-puts the

decoded data from a fixed state (arbitrarily selected in

advance) if RE scheme is used, or traces back the survivor

path from the fixed state if TB scheme is used, for low-

complexity purpose. For VD in-corporated with T-

algorithm, no state is guaranteed to be active at all clock

cycles. Thus it is impossible to appoint a fixed state for

either out-putting the decoded bit (RE scheme) or starting

the trace-back process (TB scheme). In the conventional

implementation of T -algorithm, the decoder can use the

optimal state (state with Popt), which is always enabled, to

output or trace back data. The process of searching for Popt

can find out the index of the optimal state as a byproduct.

However, when the estimated Popt is used [8], or in our

case Popt is calculated from PMs at the previous time slot,

it is difficult to find the index of the optimal state.

 A practical method is to find the index of an

enabled state through a 2k-1 to k-1 priority encoder. Suppose

that we have labeled the states from 0 to 63. The output of

the priority encoder would be the unpurged state with the

lowest index. Assuming the purged states have the flag ‚0‛

and other states are assigned the flag ‚1‛, the truth table of

such a priority encoder is shown in Table I, where ‚flag‛ is

the input and ‚index‛ is the output. Implementation of

such a table is not trivial. In our design, we employ efficient

architecture for the 64-to-6 priority encoder based on three

4-to-2 priority encoders, as shown in Fig. 7. The 64 flags are

first divided into 4 groups, each of which contains 16 flags.

The priority encoder at level 1 detects which group contains

at least one ‚1‛ and determines ‚index [5:4+‛. Then MUX2

selects one group of flags based on ‚index *5:4+‛. The input

of the priority encoder at level 2 can be computed from the

output of MUX2 by ‚OR‛ operations. We can also reuse the

intermediate results by introducing another MUX (MUX1).

The output of the priority encoder at level 2 is ‚index [3:2+‛.

Again, ‚index [3:2+‛ selects four flags (MUX3) as the input

of the priority en-coder at level 3. Finally, the last encoder

will determine ‚index *1:0+‛

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Implementing the 4-to-2 priority encoder is much simpler

than implementing the 64-to-6 priority encoder. Its truth

table is shown in Table II and the corresponding logics are

shown in (10) and (11)

 Table I
 Truth table of 64-to-6 Priority Encoder

 Flag[63:0] Index[5:0]

 x x ……………………………x x x x x 1
 x x ……………………………x x x x 1 0
 x x ……………………………x x x 1 0 0
 x x ……………………………x x 1 0 0 0
 x x ……………………………x 1 0 0 0 0
 :
 :
 :
 X 1 0 ………………………..0 0 0 0 0 0
 1 0 0 ………………………..0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 1 0 0
 :
 :
 :
1 1 1 1 1 0
1 1 1 1 1 1

 Table II
 Truth table of 4-to-2 priority encoder

 Input(I[3:0]) Output(O[1:0])

 x x x 1
 x x 1 0
 x 1 0 0
 1 0 0 0

 0 0
 0 1
 1 0
 1 1

 Table III
 Synthesis results for maximum clock speed

 Max
speed(MHZ)

Cell area(mm2)

Full-trellis VD 505 0.58
VD with 2-step
pre-computation

446.4(-11.6%) 0.68(+17.2%)

Conventional
T-algorithm

232(-54.1%) 0.685(+18%)

 Table IV
 Power estimation results

 Power(mw)

Full-trellis VD 21.473(100%)

VD with 2-step
pre-computation
architecture

Tpm=0.75 20.069(93.5%)

Tpm=0.625 17.186(80.0%)

Tpm=0.5 11.754(54.7%)

Tpm=0.375 6.6127(30.8%)

 V. IMPLEMENTATION RESULTS

The full-trellis VD, the VD with the two-step

precomputation architecture and one with the conventional

algorithm are modeled with Verilog HDL code. The soft

inputs of all VDs are quantized with 7 bits. Each PM in all

VDs is quantized as 12 bits. RE scheme with survival length

of 42 is used for SMU and the register arrays associated

with the purged states are clock-gated to reduce the power

consumption in SMU. For ASIC synthesis, we use TSMC

90-nm CMOS standard cell. The synthesis targets to achieve

the maximum clock speed for each case and the results are

shown in Table III. Table III shows that the VD with two-

step precomputation architecture only decreases the clock

speed by 11% compared with the full trellis VD.

Meanwhile, the increase of the hardware area is about 17%.

The decrease of clock speed is inevitable since the iteration

bound for VD with T -algorithm is inherently longer than

that of the full-trellis VD. Also, any kinds of low-power

scheme would introduce extra hardware like the purge unit

shown in Fig. 5 or the clock-gating module in the SMU.

Therefore, the hardware overhead of the proposed VD is

expected. On the other hand, the VD with conventional T-

algorithm cannot achieve half of the clock speed of the full

trellis VD.

 Therefore, for high-speed applications, it should

not be considered. It is worth to mention that the

conventional T -algorithm VD takes slightly more hardware

than the proposed architecture, which is counterintuitive.

This is because the former decoder has a much longer

critical path and the synthesis tool took extra measures to

improve the clock speed. It is clear that the conventional T-

algorithm is not suitable for high-speed applications. If the

target throughput is moderately high, the proposed

architecture can operate at a lower supply voltage, which

will lead to quadratic power reduction compared to the

conventional scheme. Thus we next focus on the power

comparison between the full trellis VD and the proposed

scheme. We estimate the power consumption of these two

designs with Synopsys Prime Power under the clock speed

of 200 Mb/s (power supply of 1.0 V, temperature of 300 K).

A total of 1133 received symbols (12 000 bits) are simulated.

The results are shown in Table IV. With the finite word-

length implementation, the threshold can only be changed

by a step of 0.125. Therefore, to maintain a good BER

performance, the minimum threshold we chose is 0.375.

Table IV shows that, as the threshold decreases, the power

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 8
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

consumption of the pro-posed VD is reduced accordingly.

In order to achieve the same BER performance, the

proposed VD only consumes 30.8% the power of the full-

trellis VD.

 VI. CONCLUSION

We have proposed a low-power VD design for TCM

systems. The precomputation architecture that incorporates

T-algorithm efficiently reduces the power consumption of

VDs without reducing the decoding speed appreciably. We

have also analyzed the precomputation algorithm, where

the optimal precomputation steps are calculated and

discussed. This algorithm is suitable for TCM systems

which always employ high-rate convolutional codes.

Finally, we presented a design case. Both the ACSU and

SMU are modified to correctly de-code the signal. ASIC

synthesis and power estimation results show that,

compared with the full-trellis VD without a low-power

scheme, the precomputation VD could reduce the power

consumption by 70% with only 11% reduction of the

maximum decoding speed.

 VII. REFERENCES

*1+ F. Chan and D. Haccoun, ‚Adaptive viterbi decoding of

convolutional codes over memory less channels,‛ IEEE

Trans. Commun. , vol. no. 45,

[2] 11, pp. 1389–1400, Nov. 1997. ‚Bandwidth- efficient

modulations,‛ Consultative Committee For Space Data

System, Matera, Italy, CCSDS 401(3.3.6) Green Book, Issue

1, Apr. 2003.

*3+ J. B. Anderson and E. Offer, ‚Reduced-state sequence

detection with convolutional codes,‛ IEEE Trans. Inf.

Theory , vol. 40, no. 3, pp. 965–972, May 1994.

*4+ C. F. Lin and J. B. Anderson, ‚ T-algorithm decoding of

channel convolutional codes,‛ presented at the Princeton

Conf. Info. Sci. Syst., Princeton, NJ, Mar. 1986.

*5+ S. J. Simmons, ‚Breadth-first trellis decoding with

adaptive effort,‛IEEE Trans. Commun. , vol. 38, no. 1, pp.

3–12, Jan. 1990.

[6] R. A. Abdallah and N. R. Shanbhag, ‚Error-resilient

low-power viterbi decoder architectures,‛ IEEE Trans.

Signal Process. , vol. 57, no. 12, pp. 4906–4917, Dec. 2009.

[7] J. Jin and C.-Y. Tsui, ‚Low-power limited-search parallel

state viterbi decoder implementation based on scarece state

transition,‛ IEEE Trans. Very Large Scale Integr. (VLSI)

Syst. , vol. 15, no. 11, pp. 1172–1176, Oct. 2007.

*8+ F. Sun and T. Zhang, ‚Low power state-parallel relaxed

adaptive viterbi decoder design and implementation,‛ in

Proc. IEEE ISCAS, M ay 2006, pp. 4811–4814.

*9+ J. He, H. Liu, and Z. Wang, ‚A fast ACSU architecture

for viterbi de-coder using T-algorithm,‛ in Proc. 43rd IEEE

Asilomar Conf. Signals,Syst. Comput. , Nov. 2009, pp. 231–

235.

[10] K. S. Arunlal and Dr. S. A. Hariprasad‛ An efficient

viterbi decoder‛ International Journal of Advanced

Information Technology (IJAIT) Vol. 2, No.1, February 2012

[11] J. He, Z. Wang, and H. Liu, efficient 4-D 8PSK TCM

decoder architecture,‛ IEEE Trans. Very Large Scale Integr.

(VLSI) Syst. , vol. 18, no. 5, pp. 808–817, May 2010.

*12+. A.A. Peshattiwar & Tejaswini G. Panse ‚High Speed

ACSU Architecture for Viterbi Decoder Using T-

Algorithm‛ International Journal of Electrical and

Electronics Engineering (IJEEE) ISSN (PRINT): 2231 – 5284,

Vol-1, Iss-3, 2012

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 9
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

