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      Low power Viterbi decoder for Trellis coded 

              Modulation using T-algorithm 
                                                        Md.Javeed, B.Sri lakshmi 

Abstract: The viterbi decoder which is low power with the convolutional encoder for the trellis coded modulation is shown in this paper. Convolutional  
encoding  with  Viterbi  decoding  is  a  good  forward  error  correction  technique  suitable  for channels  affected  by  noise  degradation. In this paper it 

shows the viterbi decoder architecture with convolutional encoder with proposed precomputation T-algorithm which can effectively reduce the power 
consumption with negligible decrease in the speed. Implementation result is for ¾ convolutional code rate with constraint length 7 used for trellis coded 
modulation. This architecture reduces the power consumption up to 70% without any performance loss, while the degradation in clock speed is 
negligible. 

Key words: Convolutional code, T-algorithm, Trellis coded modulation (TCM), viterbi decoder, VLSI. 

 

I. INTRODUCTION: 

The use of convolutional codes with probabilistic decoding 

can significantly improve the error performance of a 

communication system [1]. Trellis coded modulation 

schemes are used in many bandwidth efficient systems. 

Typically a TCM system employs a high rate convolutional 

code, which leads to high complexity of viterbi decoder for 

the TCM decoder, when the constraint length of 

Convolutional code is also normal. For example the rate ¾ 

convolutional code used in trellis coded modulation system 

for any application has a constraint length of 7 will be in the 

complexity of the corresponding viterbi decoder for a rate 

½ convolutional code with constraint length of 9 [2] due to 

the large  number of transitions in the trellis. So, In terms of 

power consumption, the viterbi decoder is dominant 

module in a TCM decoder. In order to reduce the 

computational complexity as well as power consumption, 

low power schemes should be exploited for the VD in a 

TCM decoder. 

General solutions for low power viterbi decoder design will 

be studied in our implementation work. Power reduction in 

VDs could be achieved by reducing the number of states, 

(for example reduced state sequence decoding [3], M-

algorithm [4] and T-algorithm [1],[5],) or by over scaling the 
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supply voltage[6].Over scaling of the supply voltage is 

having a problem that it needs to take whole system into 

consideration including with VD at which we are not 

focusing of our research. In practical application RSSD is 

more commonly used than M-Algorithm which is generally 

not as efficient as M-algorithm[3] and T-Algorithm. 

Basically M-Algorithm requires a sorting process in a 

feedback loop where as T– 

Algorithm only searches for the optimal path metric [P] 

that is the maximum value or the minimum value of Ps. 

        T-Algorithm has been shown to very efficient in 

reducing the power consumption [7],[8]. However, 

searching for the optimal path metric in the feedback loop 

still reduces the decoding speed. To overcome this 

drawback, T-Algorithm has proposed in two variations, the 

relaxed adaptive VD [7], Which suggests using an 

estimated optimal path metric, instead of finding the real 

one each cycle and the limited-search parallel state VD 

based on scarce state transition [SST][8]. 

    When applied to high rate convolutional codes, the 

relaxed adaptive VD suffers a severe degradation of  bit-

error-rate(BER) performance due to the inherent drifting 

error between the estimated optimal path metric and the 

accurate one[9]. On the other hand the SST based scheme 

requires predecoding and re encoding process and is not 

suitable for TCM decoders. In TCM, the encoded data are 

always associated with a complex multi level modulation 

scheme like 8-ary phase shift keying (8PSK) OR 16/64-ary 

quadrature amplitude modulation (16/64QAM) through a 

constellation point mapper. At the receiver, a soft input VD 

should be employed to guarantee a good coding gain. So, 

the computational over head and decoding latency due to 

predecoding and re encoding of the TCM signal become 
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high. An add-compare select unit (ACSU) architecture 

based on precomputation for VDs incorporating T-

Algorithm [9], which efficiently improves the clock speed 

of a VD with T-Algorithm for a rate ¾ code. Now, we 

further analyze the precomputation algorithm. A 

systematic way to determine the optimal precomputation 

steps is shown, where the minimum number of steps for 

critical path to achieve the theoretical iteration bound is 

calculated and the computational complexity overhead due 

to precomputation is evaluated. Then, we discuss a 

complete low-power VD design for the rate ¾ 

convolutional code[2]. Finally ASIC implementation results 

of VD with convolutional encoding are shown. 

     In this paper section II gives Information about VDs 

.Section III presents the precomputation architecture with 

T-algorithm. Design example with the modifications of 

survivor path memory unit(SMU) are discussed In section 

IV. Synthesis and power estimation results are shown in 

section V.               

II. VITERBI DECODER 

 

A general diagram for a viterbi decoder is shown in fig. 1. 

First , branch metrics are calculated in the B unit (BMU) 

from the received symbols. In a TCM decoder, this module 

is replaced by transition metrics unit (TMU), which is more 

complex than the BMU. Then, Bs are fed into the ACSU that 

recursively compute the path metrics (Ps) and outputs 

decision bits for each possible state transition. After that, 

the decision bits   are stored in and retrieved from the SMU 

in order to decode the source bits along the final survivor 

path. The Ps of the current iteration are stored in the path 

metric unit (PMU). 

    For calculating the optimal Ps and puncturing states T-

Algorithm requires extra computation in the ACSU loop. 

Therefore, a straight forward implementation of T-

Algorithm will dramatically reduce the decoding speed. 

The key point of improving the clock speed of T-Algorithm 

is to quickly find the optimal path metric.     

         III. PRECOMPUTATION ARCHITECTURE 

 

A. Precomputation Algorithm 

               The Basic idea of the precomputation algorithm 

was presented in [9]. The Branch metric can be calculated 

by two types: Hamming distance   and Euclidean distance 

[10]. Consider a VD for a convoluional code with a 

constraint length k, where each state receives p candidate 

paths. First, we expand Ps at the current time slot n(Ps(n)) 

as a function of Ps(n-1)to form a look-ahead computation of 

the optimal P-Popt (n). If branch metrics are calculated 

based on the Euclidean distance, popt(n) is the minimum 

value of Ps(n) can be get as 

popt(n) =min{p0(n),p1(n),……..p2-1k(n)} 

             =min{min[p0,0(n-1)+B0,0(n),p0,1(n-1)+B0,1(n)……….,    

p0,p(n-1)+B0,p(n)], 

 Min[p1,0(n-1)+B1,0(n),p1,1(n-1)+B1,1(n),……,p1,p(n-1) +B1,p(n)], 

…….., 

 Min[p2k-1-1,0(n-1)+B2k-1-1,0(n),P2k-1-1,1(n-1)+B2k-1-1,1(n),…..,P2k-1-1,p 

(n-1) +B2k-1- 1,p(n)]} 

 =min{P0,0(n-1)+B0,0(n), 

               P0,1(n-1)+B0,1(n),……., 

              P0,p(n-1)+B0,p(n), 

              P1,0(n-1)+B1,0(n), 

P1,1(n-1)+B1,1(n),….., 

P1,p(n-1)+B1,p(n),……., 

P2k-1-1,0(n-1)+B2k-1-1,0(n), 

P2k-1-1,1(n-1)+B2k-1-1,1(n),……, 

P2k-1-1,p(n-1)+B2k-1-1,p(n)}.                                    (1) 

Now, we group the states into several clusters to reduce the 

computational overhead caused by look-ahead 

computation. The trellis butterflies for a VD usually have a 

symmetric structure. In other words, the states can be 

grouped into m clusters, where all the clusters have the 

same number of states and all the states in the same cluster 

will be extended by the same Bs. Thus (1) can be rewritten 

as 

       Popt=min{min(Ps(n-1)in cluster 1) 

              +min(Bs(n) for cluster 1), 
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              Min(Ps(n-1) in cluster 2) 

              +min(Bs(n) for cluster 2), ……… , 

             Min(Ps(n-1) in cluster m) 

           +min(Bs(n) for cluster m)}. 

The minimum (Bs) for each cluster can be easily obtained 

from the BMU or TMU and min(Ps) at time n-1 in each 

cluster can be precalculated at the same time when the 

ACSU is updating the new Ps for time n. Theoretically, 

when we continuously decompose Ps(n-1), Ps(n-2),……, the 

precomputation scheme can be extended to Q steps. Where 

q is any positive integer that is less than n. Hence Popt(n) 

can be calculated directly from Ps(n-q) in q cycles. 

 

B. Choosing Precomputation steps 

                In [9], through a design example that, q -step pre-

computation can be pipelined into q stages, where the logic 

delay of each stage is continuously reduced as q increases. 

As a result, the de-coding speed of the low-power VD is 

greatly improved. However, after reaching a certain 

number of steps, qb, further precomputation would not 

result in additional benefits because of the inherent 

iteration bound of the ACSU loop. Therefore, it is worth to 

discuss the optimal number of precomputation steps. 

In a TCM system, the convolutional code usually has a 

coding rate of R/(R+1) , R=2,3,4,……, so that in (1), p=2R 

and the logic delay of the ACSU is TACSU=Taddder+Tp-in_comp, 

where Tadder is the logic delay of the adder to compute Ps 

of each candidate path that reaches the same state and Tp-

in_comp is the logic delay of a p-input comparator to 

determine the survivor path(the path with the minimum 

metric) for each state. If T-algorithm is employed in the VD, 

the iteration bound is slightly longer than TACSU because 

there will be another two input comparator in the loop to 

compare the new Ps with a threshold value obtained from 

the optimal Path metric and preset T as shown in (3) 

      Tbound=Tadder+Tp_in_comp+T2-in_comp.                           (3)      

  To achieve the iteration bound expressed in(3), for the 

precomputation in each pipelining stage, we limit the 

comparison to be among only p 0r 2p metrics. To simplify 

our evaluation , we assume that each stage reduces the 

number of the metrics to 1/p(or2-R) of its input metrics 

meeting the theoretical iteration bound should satisfy 

(2R)qb ≥  2k-1. Therefore qb≥ (k-1)/R and qb is expressed as 

(4), with a ceiling function. 

 

In the design example shown in[9], with a coding rate of ¾ 

and constraint length of 7, the minimum precomputation 

steps for the VD to meet the iteration bound  is 2 according 

to (4). It is the same value as we obtained from direct 

architecture design [9].  In some cases, the number of 

remaining metrics may slightly expand during a certain 

pipeline stage after addition with Bs. Usually, the extra 

delay can be absorbed by an optimized architecture or 

circuit design. Even if the extra delay is hard to eliminate, 

the resultant clock speed is very close to the theoretical 

bound. To fully achieve the iteration bound, we could add 

another pipeline stage, though it is very costly. 

            Computational overhead (compared with 

conventional T-algorithm) is an important factor that 

should be carefully evaluated. Most of the computational 

overhead comes from adding Bs to the metrics at each stage 

as indicated in (2). In other words, If there are m remaining 

metrics after comparison in a stage, the computational 

overhead from this stage is at least m addition operations. 

The exact overhead varies from case to case based on the 

convolutional code’s trellis diagram. Again, to simplify the 

evaluation, we consider, a code with a constraint length k 

and q precomputation steps. Also, we assume that each 

remaining metric would cause a computational overhead of 

one addition operation. In this case, the number of metrics 

will reduce at a ratio of 2(k-1)/q and the overall 

computational overhead is (measured with addition 

operation) 
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Noverhead=20+2(k-1)/q+22(k—1)/q……..+2(q-1)(k-1)/q 

            =2q.(k-1)/q-1/2(k-1)/q-1 

            =2k-1-1/2(k-1)/q-1                                               (5) 

The estimated computational overhead according to (5) is 

63/ (26/q-1) when k=7 and q.≤ 6, which almost exponentially 

to q. In a real design the overhead increases even faster 

than what is given by (5) when other factors (such as 

comparisons or expansion of metrics as we mentioned 

above) are taken into consideration. Therefore, a small 

number of precomputational steps is preferred even though 

the iteration bound may not be fully satisfied. In most 

cases, one or two-step precomputation is a good choice. 

   The above analysis also reveals that precomputation is 

not a good option for low rate convolutional codes (rate of 

1/RC, RC=2,3,…..), because it usually needs more than two 

steps to effectively reduce the critical path(in that case, R=1 

in(4) and qb is k-1). However, for TCM systems, where 

high-rate convolutional codes are always employed, Two 

steps of precomputation could achieve the iteration bound 

or make a big difference in terms of clock speed. In 

addition, the computational overhead is a small. 

 

IV. LOW POWER VITERBI DECODER DESIGN 

We use the 4-D 8PSK TCM system described in[2] as the 

example. The rate ¾ convolutional code employed in the 

TCM system is shown in Fig. 3. Preliminary BER 

performance and architecture design for the ACSU unit 

have been shown in [9]. In his section, we further address 

the SMU design issue. Later in the next section we will 

report ASIC implementation results that have not been 

obtained earlier.  

 

   BER performance of the VD employing T-algorithm with 

different values of T over an additive white Gaussian noise 

channel is shown in Fig. 4. The simulation is based on a 4-D 

8PSK TCM system employing the rate -3/4 code [11]. The 

overall coding rate is 11/12 after due to other uncoded bits 

in TCM system. Compared with over ideal viterbi 

algorithm, the threshold ‚Tpm‛ can be lowered to 0.3 with 

less than 0.1 dB of performance loss, while the 

computational complexity could be reduced by upto 90% 

[9] ideally. Since the performance is the same as that of the 

conventional T-algorithm. 

A. One step precomputation 

            For the convenience of our discussion we define the 

left most register in Fig. 3 as the most significant bit (MSB) 

and right most register as the least significant bit (LSB). The 

64 states and path metrics are labeled from 0 to 63. 

 

                 A careful study reveals that the 64 states can be 

partitioned into two groups odd numbered Ps( when ‘LSB’ 

is 1) And even numbered (when ‘LSB’ is 0) The odd PMs 

are all extended by odd Bs (when Z0 is ‘1’) and the even 

PMs are all extended by even Bs (when Z0 is ‘0’). The 

minimum P becomes: 
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Popt (n) = min {min (even Ps (n-1)) +  

                min(even Bs(n)), min (odd Ps (n-1))   

                 +min(odd Bs(n)) }. 

The functional diagram of the 1-step pre-computation 

scheme is shown in Fig. 5. In general (Path metric purge 

algorithm) PPAU have to wait for the new Ps from the 

ACSU to calculate the optimal Path metric [12], while in 

Fig. 5 the optimal Path metric is calculated directly from Ps 

in the previous cycles at the same time when the ACSU is 

calculating the new Ps. The details of the PPAU are shown 

in Fig. 6.   

 

The critical path of the 1-step pre-computation scheme is 

T1-step-pre-T = 2TAdder+ 2T4-in_comp +3T2-in-comp                       (6) 

             The hardware overhead of the 1-step pre-

computation scheme is about 4 adders, which is negligible. 

Compared with the SEPC-T algorithm, however, the critical 

path of the 1-sept pre-computation scheme is still long[12]. 

In order to further shorten the critical path, we explore the 

2-step pre-computation design next. 

          B. Two step precomputation 

a. Acsu design 

 We again need to analyze the trellis transition of the 

original code. In the 1-step pre-computation architecture, 

we have pointed out that for the particular code shown in 

Fig. 3, odd-numbered states are extended by odd Bs, while 

even-numbered states are extended by even Bs. 

Furthermore, the even states all extend to states with higher 

indices (the MSB in Fig. 3 is ‘1’) in the trellis transition, 

while the odd states extend to states with lower indices (the 

MSB is ‘0’ in Fig. 3). This information allows us to obtain 

the 2-step pre-computation data path. This process is 

straightforward, although the mathematical details are 

tedious. For clarity, we only provide the main conclusion 

here. 

The states are further grouped into 4 clusters as described 

by (7).  The BMs are categorized in the same way and are 

described by (8).  

 cluster3 = {Pm | 0≤m≤ 63, m mod 4 = 3}        

cluster2 = ,Pm | 0 ≤m≤63, m mod 4 = 1} 

 cluster1 = ,Pm | 0 ≤m≤ 63, m mod 4 = 2}               

cluster0 = ,Pm | 0 ≤m≤ 63, m mod 4 = 0}     (7) 

BMG3 = {Bm | 0≤m≤ 15, m mod 4 = 3}  

BMG2 = {Bm | 0≤m≤ 15, m mod 4 = 1}               

BMG1 = {Bm | 0≤m≤ 15, m mod 4 = 2}  

BMG0 = {Bm | 0≤m≤ 15, m mod 4 = 0}         (8) 

The optimal PM at time n is calculated as    

Popt (n) = min [min {min (cluster0 (n-2))+ min    

               (BMG0 (n-1)), min (cluster1 (n-2))+   

                min (BMG1 (n-1)), min (cluster2 (n- 

2)) + min (BMG3 (n-1)), min (cluster3 (n-2))+ min (BMG2(n-

1))   }+ min (even Bs(n)),  

min {min (cluster0 (n-2))+ min (BMG1(n-1)),  

  min (cluster1 (n-2))+ min (BMG0(n-1)),   

  min (cluster2 (n-2)) + min (BMG2 (n-1)),  

  min (cluster3 (n-2))+ min (BMG3(n-1))  

  }+ min (odd Bs(n))                                (9) 
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The functional block diagram of viterbi decoder with two 

step precomputation T-algorithm is shown in fig. 7  The 

minimum value of each branch metric group (BMG) can be 

calculated in BMU or TMU and then passed to threshold 

generator unit (TGU) to calculate(Popt+T)- (Popt+T) and the 

new Ps are compared in the ‚purge unit‛. The architecture 

of TGU is shown in fig. 8 which implements the key 

functions of two stem precomputation scheme. In figure 8 

the ‚MIN 16‛ unit for finding the minimum value in each 

cluster is constructed with two stages of four-input 

comparators. This architecture has been optimized to meet 

the iteration bound [9]. Com-pared with the conventional 

T-algorithm, the computational overhead of this 

architecture is 12 addition operations and a comparison, 

which is slightly more than the number obtained from the 

evaluation in (5)  

 

 

b. SMU design 

In this section, we address an important issue regarding 

SMU design when T -algorithm is employed. There are two 

different types of SMU in the literature: register exchange 

(RE) and trace back (TB) schemes. In the regular VD 

without any low-power schemes, SMU always out-puts the 

decoded data from a fixed state (arbitrarily selected in 

advance) if RE scheme is used, or traces back the survivor 

path from the fixed state if TB scheme is used, for low-

complexity purpose. For VD in-corporated with T-

algorithm, no state is guaranteed to be active at all clock 

cycles. Thus it is impossible to appoint a fixed state for 

either out-putting the decoded bit (RE scheme) or starting 

the trace-back process (TB scheme). In the conventional 

implementation of T -algorithm, the decoder can use the 

optimal state (state with Popt ), which is always enabled, to 

output or trace back data. The process of searching for Popt 

can find out the index of the optimal state as a byproduct. 

However, when the estimated Popt is used [8], or in our 

case Popt is calculated from PMs at the previous time slot, 

it is difficult to find the index of the optimal state. 

                 A practical method is to find the index of an 

enabled state through a 2k-1 to k-1 priority encoder. Suppose 

that we have labeled the states from 0 to 63. The output of 

the priority encoder would be the unpurged state with the 

lowest index. Assuming the purged states have the flag ‚0‛ 

and other states are assigned the flag ‚1‛, the truth table of 

such a priority encoder is shown in Table I, where ‚flag‛ is 

the input and ‚index‛ is the output. Implementation of 

such a table is not trivial. In our design, we employ efficient 

architecture for the 64-to-6 priority encoder based on three 

4-to-2 priority encoders, as shown in Fig. 7. The 64 flags are 

first divided into 4 groups, each of which contains 16 flags. 

The priority encoder at level 1 detects which group contains 

at least one ‚1‛ and determines ‚index [5:4+‛. Then MUX2 

selects one group of flags based on ‚index *5:4+‛. The input 

of the priority encoder at level 2 can be computed from the 

output of MUX2 by ‚OR‛ operations. We can also reuse the 

intermediate results by introducing another MUX (MUX1). 

The output of the priority encoder at level 2 is ‚index [3:2+‛. 

Again, ‚index [3:2+‛ selects four flags (MUX3) as the input 

of the priority en-coder at level 3. Finally, the last encoder 

will determine ‚index *1:0+‛              
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Implementing the 4-to-2 priority encoder is much simpler 

than implementing the 64-to-6 priority encoder. Its truth 

table is shown in Table II and the corresponding logics are 

shown in (10) and (11) 

 

                               Table I 
      Truth table of 64-to-6 Priority Encoder 

         Flag[63:0] Index[5:0] 

  x x ……………………………x x x x x 1 
  x x ……………………………x x x x 1 0 
  x x ……………………………x x x 1 0 0 
  x x ……………………………x x 1 0 0 0 
  x x ……………………………x 1 0 0 0 0 
                        : 
                        : 
                        : 
  X 1 0 ………………………..0 0 0 0 0 0 
  1 0 0 ………………………..0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
0 0 0 0 1 1 
0 0 0 1 0 0 
         : 
         : 
         : 
1 1 1 1 1 0 
1 1 1 1 1 1 

 
                                  Table II 
        Truth table of 4-to-2 priority encoder 

     Input(I[3:0]) Output(O[1:0]) 

        x x x 1  
        x x 1 0 
        x 1 0 0 
        1 0 0 0 

      0 0 
      0 1 
      1 0 
      1 1 

                                  Table III 
      Synthesis results for maximum clock speed 

 Max 
speed(MHZ) 

Cell area(mm2) 

Full-trellis VD         505       0.58 
VD with 2-step 
pre-computation 

446.4(-11.6%) 0.68(+17.2%) 

Conventional  
T-algorithm 

232(-54.1%) 0.685(+18%) 

 

                                Table IV 
                   Power estimation results 

 Power(mw) 

Full-trellis VD 21.473(100%) 

VD with 2-step 
pre-computation 
architecture 

Tpm=0.75 20.069(93.5%) 

Tpm=0.625 17.186(80.0%) 

Tpm=0.5 11.754(54.7%) 

Tpm=0.375 6.6127(30.8%) 

 

 

                  V.  IMPLEMENTATION RESULTS 

The full-trellis VD, the VD with the two-step 

precomputation architecture and one with the conventional 

algorithm are modeled with Verilog HDL code. The soft 

inputs of all VDs are quantized with 7 bits. Each PM in all 

VDs is quantized as 12 bits. RE scheme with survival length 

of 42 is used for SMU and the register arrays associated 

with the purged states are clock-gated to reduce the power 

consumption in SMU. For ASIC synthesis, we use TSMC 

90-nm CMOS standard cell. The synthesis targets to achieve 

the maximum clock speed for each case and the results are 

shown in Table III. Table III shows that the VD with two-

step precomputation architecture only decreases the clock 

speed by 11% compared with the full trellis VD. 

Meanwhile, the increase of the hardware area is about 17%. 

The decrease of clock speed is inevitable since the iteration 

bound for VD with T -algorithm is inherently longer than 

that of the full-trellis VD. Also, any kinds of low-power 

scheme would introduce extra hardware like the purge unit 

shown in Fig. 5 or the clock-gating module in the SMU. 

Therefore, the hardware overhead of the proposed VD is 

expected. On the other hand, the VD with conventional   T-

algorithm cannot achieve half of the clock speed of the full 

trellis VD. 

               Therefore, for high-speed applications, it should 

not be considered. It is worth to mention that the 

conventional T -algorithm VD takes slightly more hardware 

than the proposed architecture, which is counterintuitive. 

This is because the former decoder has a much longer 

critical path and the synthesis tool took extra measures to 

improve the clock speed. It is clear that the conventional T-

algorithm is not suitable for high-speed applications. If the 

target throughput is moderately high, the proposed 

architecture can operate at a lower supply voltage, which 

will lead to quadratic power reduction compared to the 

conventional scheme. Thus we next focus on the power 

comparison between the full trellis VD and the proposed 

scheme. We estimate the power consumption of these two 

designs with Synopsys Prime Power under the clock speed 

of 200 Mb/s (power supply of 1.0 V, temperature of 300 K). 

A total of 1133 received symbols (12 000 bits) are simulated. 

The results are shown in Table IV. With the finite word-

length implementation, the threshold can only be changed 

by a step of 0.125. Therefore, to maintain a good BER 

performance, the minimum threshold we chose is 0.375. 

Table IV shows that, as the threshold decreases, the power 
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consumption of the pro-posed VD is reduced accordingly. 

In order to achieve the same BER performance, the 

proposed VD only consumes 30.8% the power of the full-

trellis VD. 

                            VI. CONCLUSION 

We have proposed a low-power VD design for TCM 

systems. The precomputation architecture that incorporates 

T-algorithm efficiently reduces the power consumption of 

VDs without reducing the decoding speed appreciably. We 

have also analyzed the precomputation algorithm, where 

the optimal precomputation steps are calculated and 

discussed. This algorithm is suitable for TCM systems 

which always employ high-rate convolutional codes. 

Finally, we presented a design case. Both the ACSU and 

SMU are modified to correctly de-code the signal. ASIC 

synthesis and power estimation results show that, 

compared with the full-trellis VD without a low-power 

scheme, the precomputation VD could reduce the power 

consumption by 70% with only 11% reduction of the 

maximum decoding speed. 
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